Unsupervised Geometry-Aware Representation for 3D Human Pose Estimation

A great example of how domain-specific knowledge can help design network architecture, in this case helping them make the jump from supervised learning (where training data may be difficult or time-consuming to acquire) to unsupervised learning (where training data is often plentiful). Modern 3D human pose estimation techniques rely on deep networks, which require large…Read More

Deep Unsupervised Intrinsic Image Decomposition by Siamese Training

Intrinsic image decomposition means splitting the observed color of a scene into its underlying components, such as illumination and reflectance. Once this process has been performed the layers can be manipulated independently before being recomposed to recreate a modified scene. What’s particularly interesting about this work is that it uses unsupervised training, which by definition…Read More