Texture Mixing by Interpolating Deep Statistics via Gaussian Models

Here’s an interesting technique which may provide new ways in which to generate and synthesize textures from examples via interpolation and style transfer. Recently, enthusiastic studies have devoted to texture synthesis using deep neural networks, because these networks excel at handling complex patterns in images. In these models, second-order statistics, such as Gram matrix, are…Read More

High-Fidelity Facial Reflectance and Geometry Inference From an Unconstrained Image

We present a deep learning-based technique to infer high-quality facial reflectance and geometry given a single unconstrained image of the sub- ject, which may contain partial occlusions and arbitrary illumination conditions. The reconstructed high-resolution textures, which are generated in only a few seconds, include high-resolution skin surface reflectance maps, representing both the diffuse and specular…Read More

Learning Category-Specific Mesh Reconstruction from Image Collections

Some truly remarkable results given the dataset from which this model was trained. Code on github will be available in the future. We present a learning framework for recovering the 3D shape, camera, and texture of an object from a single image. The shape is represented as a deformable 3D mesh model of an object…Read More

Texture Networks: Feed-forward Synthesis of Textures and Stylized Images

Gatys et al. recently demonstrated that deep networks can generate beautiful textures and stylized images from a single texture example. However, their methods requires a slow and memory-consuming optimization process. We propose here an alternative approach that moves the computational burden to a learning stage. Given a single example of a texture, our approach trains…Read More