Live Intrinsic Material Estimation

Whilst augmented reality may have motivated this research there’s clear applicability of this technique to visual effects, and further research in this area is sure to pave the way to exciting new tools.

We present the first end-to-end approach for real-time material estimation for general object shapes that only requires a single color image as input. In addition to Lambertian surface properties, our approach fully automatically computes the specular albedo, material shininess, and a foreground segmentation. We tackle this challenging and ill-posed inverse rendering problem using recent advances in image-to-image translation techniques based on deep convolutional encoder-decoder architectures. The underlying core representations of our approach are specular shading, diffuse shading and mirror images, which allow to learn the effective and accurate separation of diffuse and specular albedo. In addition, we propose a novel highly efficient perceptual rendering loss that mimics real-world image formation and obtains intermediate results even during run time. The estimation of material parameters at real-time frame rates enables exciting mixed-reality applications, such as seamless illumination-consistent integration of virtual objects into real-world scenes, and virtual material cloning. We demonstrate our approach in a live setup, compare it to the state of the art, and motivate its effectiveness through quantitative and qualitative evaluation.


Are you aware of some research that warrants coverage here? Contact us or let us know in the comments section below!

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.